赫伯特·A·西蒙的西蒙和人工智能

一、赫伯特·A·西蒙的西蒙和人工智能

1、20世纪50年代以后,西蒙的研究方向发生了重大转移,逐渐转向了认知心理学和人工智能领域。西蒙认为,社会科学缺乏像自然科学一样的科学性,社会科学需要借鉴自然科学严格和精确的研究方法,才能成为真正意义上的科学。同时,在西蒙看来,经济学、管理学、心理学等学科所研究的课题,实际上都是“人的决策过程和问题求解过程”。要想真正理解组织内的决策过程,就必须对人及其思维过程有更深刻的了解。因此,借助于计算机技术的发展,西蒙与同事纽厄尔等人一起开始尝试用计算机来模拟人的行为,从而创建了认知心理学和人工智能研究新领域。西蒙认为,人的思维过程和计算机运行过程存在着一致性,都是对符号的系列加工,因此,可以用计算机来模拟人脑的工作。他甚至大胆地预言,人脑能做的事,计算机同样也可以完成。“初级知觉和记忆程序(EPAM)”和“通用问题求解系统(GPS)”等人工智能软件的问世,部分证实了西蒙的预言。

2、当时人工智能的主要学派有下列三家:①符号主义(Symbolicism),又称为逻辑主义(Logicism)、心理学派(Psychlogism)或计算机学派(Computerism),其原理主要为物理符号系统假设和有限理性原理。这一学派认为人工智能源于数理逻辑。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流学派。这个学派的代表有纽厄尔、肖、西蒙和尼尔逊(Nilsson)等。②联结主义(Connectionism),又称为仿生学派(Bionicsism)或生理学派(Physiologism),其原理主要为神经网络及神经网络间的连接机制与学习算法。这一学派认为人工智能源于仿生学,特别是人脑模型的研究。从模型到算法,从理论分析到工程实现,为神经网络计算机走向市场打下了坚实的基础。③行为主义(Actionism),又称进化主义(Evolutionism)或控制论学派(Cyberneticsism),其原理为控制论及感知-动作型控制系统。他们对人工智能发展历史具有不同的看法,这一学派认为人工智能源于控制论。

3、西蒙在人工智能中做出的最基本贡献,是他提出了“物理符号系统假说”PSSH(Physical Symbol System Hypothesis)。在这一意义上,他是符号主义学派的创始人和代表人物之一。他的基本观点是:知识的基本元素是符号,智能的基础依赖于知识,研究方法则是用计算机软件和心理学方法进行宏观上的人脑功能的模拟。符号主义的主要依据是两个基本原理:①物理符号系统假设原理。②由西蒙提出的有限合理性原理。这一学说鼓励着人们对人工智能进行全面的探索。西蒙认为,任何一个物理符号系统如果是有智能的,则肯定能执行对符号的输入、输出、存储、复制、条件转移和建立符号结构这样六种操作。反之,能执行这六种操作的任何系统,也就一定能够表现出智能。根据这个假设,我们可以推出以下结论:人是具有智能的,因此人是一个物理符号系统;计算机是一个物理符号系统,因此它必具有智能;计算机能模拟人,或者说能模拟人的大脑功能。

4、1956年,西蒙、纽厄尔和另一位著名学者约翰·肖(John Cliff Shaw)一起,成功开发了世界上最早的启发式程序“逻辑理论家”LT(1ogic Theorist),从而使机器迈出了逻辑推理的第一步。在卡内基-梅隆大学的计算机实验室,西蒙和纽厄尔从分析人类解答数学题的技巧入手,让一些人对各种数学题作周密的思考,要求他们不仅写出求解的答案,而且要说出自己推理的方法和步骤。通过对实例的大量观察,西蒙和纽厄尔广泛收集了人类求解一般性问题的各种方案。他们发现,人们求解数学题时,通常采用试凑的办法。试凑时并不一定列出所有的可能性,而是用逻辑推理来迅速缩小搜索的范围。人类证明数学定理也有类似的思维规律,通过把一个复杂问题分解成几个简单的子问题,以及利用已知常量代入未知变量等方法,用已知的公理、定理或解题规则进行试探性推理,直到所有的子问题最终都变成已知的,然后根据记忆中的公理和已被证明的定理,运用代入法、替换法来解决子问题,最终解决整个问题。人类求证数学定理同样也是一种启发式搜索,与电脑下棋的原理有异曲同工之妙。在这一基础上,他们利用“逻辑理论家”程序向数学定理发起挑战,建立了机器证明数学定理的启发式搜索法,并用计算机证明了罗素、怀特海的数学名著《数学原理》一书第二章52个定理中的38个定理(1963年,经过改进的“逻辑理论家”程序在一部更大的电脑上,最终完成了第二章全部52条数学定理的证明)。

5、基于这一成功,西蒙和纽厄尔把“逻辑理论家”程序扩充到了人类求解一般问题的过程,设想用机器模拟具有普遍意义的人类思维活动。“逻辑理论家”受到了人们的高度评价,认为它是用计算机探讨人类智力活动的第一个真正意义上的成果,也是图灵关于机器可以具有智能这一论断的第一个实际的证明。在开发“逻辑理论家”程序的过程中,西蒙首次提出并成功应用了“链表”(list)作为基本的数据结构,并设计与实现了表处理语言IPL(Information Processing Language)。在人工智能的历史上,IPL是所有表处理语言的始祖,也是最早使用递归子程序的语言。其基本元素是符号,并首次引进表处理方法。IPL最基本的数据结构是表结构,可用以代替存储地址或有规则的数组,这有助于将程序员从繁琐的细节中释放出来而在更高的水平上思考问题。IPL的另一特点是引进了生成器,每次产生一个值,然后挂起,等待被调用,在调用时从被挂起的地方开始。早期的很多人工智能程序都是用表处理语言编制而成的。表处理语言本身也因此经历了一个发展与完善的过程,其最后一个版本IPLⅤ可以处理树形结构的表。

6、1956年夏天,数十名来自数学、心理学、神经学、计算机科学与电气工程等各领域的学者聚集在位于美国新罕布什尔州汉诺威市的达特茅斯学院,讨论如何用计算机模拟人的行为,并根据麦卡锡(J.McCarthy,1971年图灵奖获得者)的建议,正式把这一学科领域命名为“人工智能”(Artificial Intelligence)。会议的召开标志着人工智能这一学科正式诞生。赫伯特·西蒙指出,人工智能的研究是学会怎样编制计算机程序来完成人类机智的行为。西蒙带到会议上去的“逻辑理论家”是当时惟一可以工作的人工智能软件,引起了与会代表的极大兴趣与关注。因此,西蒙、纽厄尔,以及达特茅斯会议的发起人麦卡锡和明斯基(M.L.Minsky,1969年图灵奖获得者),被公认为是人工智能的奠基人。他们四人于1960年组成了第一个人工智能研究小组,有力地推动了人工智能的发展。

7、1960年,西蒙夫妇做了一个有趣的心理学实验,这个实验表明人类解决问题的过程是一个搜索的过程,其效率取决于启发式函数(heuristic function)。在这个实验的基础上,西蒙、纽厄尔和肖又一次成功地合作开发了能解答11种类型不同问题的“通用问题求解系统”GPS(General Problem Solver)。这一求解系统的基本原理,是找出目标要求与当前态势之间的差异,选择有利于消除差异的操作,以逐步缩小差异并最终达到目标。西蒙曾多次强调指出,科学发现只是一种特殊类型的问题求解,因此也可以用计算机程序来实现。1976~1983年间,西蒙和兰利(Pat W.Langley)、布拉茨霍夫(Gary L.Bradshaw)合作,设计了有六个版本的BACON系统发现程序,重新发现了一系列著名的物理、化学定律,证明了西蒙的上述论点。从而开拓出人工智能中“问题求解”的一大领域。

8、西蒙转向计算机技术后,就一直研究计算机下棋问题。1966年,西蒙、纽厄尔和贝洛尔(Baylor)合作,开发了最早的下棋程序MATER。1997年,IBM的“深蓝”(Deep Blue)计算机打败了白俄罗斯的国际特级大师卡斯帕罗夫以后,81岁的西蒙还和俄亥俄州立大学的人工智能专家T.Munakata一起,在《ACM通信》杂志的8月号上发表了《人工智能给我们的教训》(AI Lessons)一文,对此事进行了评论,指出一个运行于计算机上的国际象棋程序拥有2600分等级分,相当于白俄罗斯国际象棋世界冠军卡斯帕罗夫的级别水平。

9、西蒙在人工智能方面的另一大贡献,是发展与完善了语义网络的概念和方法,把它作为知识表示(knowledge representation)的一种通用手段,并取得了很大成功。在知识表示方法中,语义网络(semantic network)是—种重要而有效的方法。这种表示法是奎林(M.R.Quillian)在20世纪60年代后期提出来的,作为人类联想记忆的一个显示心理学模型。奎林在开发TLC系统(Teachable Language Comprehender)中用它来描述英语的词义,模拟人类的联想记忆。但用语义网络作为一般的知识表示方法,则是西蒙在1970年研究自然语言理解的过程中把它的各种概念基本明确下来的。20世纪70年代中期,西蒙和CAD专家依斯特曼(C.M.Eastman)合作,研究住宅的自动空间综合,不仅开了“智能大厦”(intelligent building)的先河,还成为智能CAD即ICAD研究的开端。

10、起源于20世纪60年代末70年代初,当前受到极大重视的决策支持系统DSS(Decision Support System),其概念的核心是关于决策模式的理论,而这个理论也是由西蒙奠定基础的。在不确定条件下的决策模型除了贝叶斯模型外,另一个比较重要的理论模型是采用Von Neumann-Morgenstern效用函数的期望值最大模型。西蒙在《人的模型》一书中形成了电子计算机能模拟人的思维的思想,开始了人工智能的系列研究。针对效用函数的期望值最大模型,西蒙提出了有限合理性模型。有限合理性模型的基本思想是:首先,所有的决策者涉及到的是一个有限的范围;其次,我们不能对将来给出一个概率值,但最好有一个关于将来事件的大致概念;第三,如果后者不以前者为转移的话,我们在一个领域中的愿望可能与在另一个领域中的愿望完全不同;最后,我们更注重搜集信息而不是分析需求,在收集信息后,最通常的抉择是基于直觉。基于西蒙关于决策模式的理论,凯恩(P. G. Keen)提出了一种设计方法,称为“自适应法”(self-adaptive method),把决策支持系统当成一种自适应系统,由DSS应用系统、DSS生成系统和DSS工具三个技术层次组成,由决策者运行,且能适应时间的变化。西蒙曾称赞这样的系统“能适应三个时间范围内的各种变化,即在短期运行中,系统能在一个相对狭窄的范围内寻求答案;在中期运行中,系统能通过修改其功能和活动而学会适应;在长期运行中,系统能发展到适应差别极大的行为风格和功能”。这些研究,使计算机技术与管理决策紧密连接起来。

© 版权声明

相关文章